login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027476
Third column of A027467.
13
1, 45, 1350, 33750, 759375, 15946875, 318937500, 6150937500, 115330078125, 2114384765625, 38058925781250, 674680957031250, 11806916748046875, 204350482177734375, 3503151123046875000, 59553569091796875000
OFFSET
3,2
FORMULA
Numerators of sequence a[3,n] in (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = 15^(n-3)*binomial(n-1, 2).
From G. C. Greubel, May 13 2021: (Start)
a(n) = 45*a(n-1) - 675*a(n-2) + 3375*a(n-3).
G.f.: x^3/(1 - 15*x)^3.
E.g.f.: (-2 + (2 - 30*x + 225*x^2)*exp(15*x))/6750. (End)
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=3} 1/a(n) = 30 - 420*log(15/14).
Sum_{n>=3} (-1)^(n+1)/a(n) = 480*log(16/15) - 30. (End)
MAPLE
seq((15)^(n-3)*binomial(n-1, 2), n=3..30) # G. C. Greubel, May 13 2021
MATHEMATICA
Table[(n-1)*(n-2)/2 * 15^(n-3), {n, 3, 30}] (* Vincenzo Librandi, Dec 29 2012 *)
PROG
(Magma) [(n-1)*(n-2)/2 * 15^(n-3): n in [3..20]]; // Vincenzo Librandi, Dec 29 2012
(Sage) [(15)^(n-3)*binomial(n-1, 2) for n in (3..30)] # G. C. Greubel, May 13 2021
CROSSREFS
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), this sequence (q=15).
Sequence in context: A346324 A243570 A145151 * A062262 A137716 A035521
KEYWORD
nonn
STATUS
approved