OFFSET
0,4
COMMENTS
Starting at 1, three-fold convolution of A000400 (powers of 6).
Number of n-permutations of 7 objects: p, u, v, w, z, x, y with repetition allowed, containing exactly two u's. - Zerinvary Lajos, May 23 2008
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Index entries for linear recurrences with constant coefficients, signature (18,-108,216).
FORMULA
a(n) = 18*a(n-1) -108*a(n-2) +216*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 6^(n-2)*C(n, 2).
G.f.: x^2/(1-6*x)^3.
E.g.f.: exp(6*x) * x^2/2. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=2} 1/a(n) = 12 - 60*log(6/5).
Sum_{n>=2} (-1)^n/a(n) = 84*log(7/6) - 12. (End)
MAPLE
seq(binomial(n, 2)*6^(n-2), n=0..19); # Zerinvary Lajos, May 23 2008
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[x^2/2! Exp[6x], {x, 0, nn}], x] (* Geoffrey Critzer, Oct 03 2013 *)
LinearRecurrence[{18, -108, 216}, {0, 0, 1}, 30] (* Harvey P. Dale, Apr 20 2022 *)
PROG
(Sage) [6^(n-2)*binomial(n, 2) for n in range(0, 21)] # Zerinvary Lajos, Mar 13 2009
(Magma) [6^n*Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 08 2003
STATUS
approved