login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081136
6th binomial transform of (0,0,1,0,0,0, ...).
20
0, 0, 1, 18, 216, 2160, 19440, 163296, 1306368, 10077696, 75582720, 554273280, 3990767616, 28298170368, 198087192576, 1371372871680, 9403699691520, 63945157902336, 431629815840768, 2894458765049856, 19296391766999040
OFFSET
0,4
COMMENTS
Starting at 1, three-fold convolution of A000400 (powers of 6).
Number of n-permutations of 7 objects: p, u, v, w, z, x, y with repetition allowed, containing exactly two u's. - Zerinvary Lajos, May 23 2008
FORMULA
a(n) = 18*a(n-1) -108*a(n-2) +216*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 6^(n-2)*C(n, 2).
G.f.: x^2/(1-6*x)^3.
E.g.f.: exp(6*x) * x^2/2. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=2} 1/a(n) = 12 - 60*log(6/5).
Sum_{n>=2} (-1)^n/a(n) = 84*log(7/6) - 12. (End)
MAPLE
seq(binomial(n, 2)*6^(n-2), n=0..19); # Zerinvary Lajos, May 23 2008
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[x^2/2! Exp[6x], {x, 0, nn}], x] (* Geoffrey Critzer, Oct 03 2013 *)
LinearRecurrence[{18, -108, 216}, {0, 0, 1}, 30] (* Harvey P. Dale, Apr 20 2022 *)
PROG
(Sage) [6^(n-2)*binomial(n, 2) for n in range(0, 21)] # Zerinvary Lajos, Mar 13 2009
(Magma) [6^n*Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
CROSSREFS
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), this sequence (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).
Sequence in context: A324638 A009470 A111991 * A101188 A019757 A021503
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 08 2003
STATUS
approved