login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

6th binomial transform of (0,0,1,0,0,0, ...).
20

%I #39 Sep 08 2022 08:45:09

%S 0,0,1,18,216,2160,19440,163296,1306368,10077696,75582720,554273280,

%T 3990767616,28298170368,198087192576,1371372871680,9403699691520,

%U 63945157902336,431629815840768,2894458765049856,19296391766999040

%N 6th binomial transform of (0,0,1,0,0,0, ...).

%C Starting at 1, three-fold convolution of A000400 (powers of 6).

%C Number of n-permutations of 7 objects: p, u, v, w, z, x, y with repetition allowed, containing exactly two u's. - _Zerinvary Lajos_, May 23 2008

%H Vincenzo Librandi, <a href="/A081136/b081136.txt">Table of n, a(n) for n = 0..400</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (18,-108,216).

%F a(n) = 18*a(n-1) -108*a(n-2) +216*a(n-3), a(0)=a(1)=0, a(2)=1.

%F a(n) = 6^(n-2)*C(n, 2).

%F G.f.: x^2/(1-6*x)^3.

%F E.g.f.: exp(6*x) * x^2/2. - _Geoffrey Critzer_, Oct 03 2013

%F From _Amiram Eldar_, Jan 05 2022: (Start)

%F Sum_{n>=2} 1/a(n) = 12 - 60*log(6/5).

%F Sum_{n>=2} (-1)^n/a(n) = 84*log(7/6) - 12. (End)

%p seq(binomial(n, 2)*6^(n-2), n=0..19); # _Zerinvary Lajos_, May 23 2008

%t nn=20;Range[0,nn]!CoefficientList[Series[x^2/2! Exp[6x],{x,0,nn}],x] (* _Geoffrey Critzer_, Oct 03 2013 *)

%t LinearRecurrence[{18,-108,216},{0,0,1},30] (* _Harvey P. Dale_, Apr 20 2022 *)

%o (Sage) [6^(n-2)*binomial(n,2) for n in range(0, 21)] # _Zerinvary Lajos_, Mar 13 2009

%o (Magma) [6^n*Binomial(n+2,2): n in [-2..20]]; // _Vincenzo Librandi_, Oct 16 2011

%Y Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), this sequence (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

%K easy,nonn

%O 0,4

%A _Paul Barry_, Mar 08 2003