login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335644
Expansion of e.g.f. Product_{k>0} (1 + sin(x)^k / k!).
3
1, 1, 1, 3, 1, -23, -2, -28, -2435, 253, 118966, 158400, -5277106, -6453094, 377003877, 150562341, -38919169331, -49489639843, 4097920244054, 15989402021656, -397866849121614, -3949517739363706, 34992745696351023, 937723673130987379, -2417716098650478930, -223227071403982903362
OFFSET
0,4
FORMULA
E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*sin(x)^(i*j)/(i*(j!)^i) ).
MATHEMATICA
max = 25; Range[0, max]! * CoefficientList[Series[Product[1 + Sin[x]^k/k!, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 04 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+sin(x)^k/k!)))
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*sin(x)^(i*j)/(i*j!^i))))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 03 2020
STATUS
approved