login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335637
Expansion of e.g.f. Product_{k>0} (1 + sin(x)^k / k).
3
1, 1, 1, 4, 10, 25, 210, 978, 2336, 25265, 361424, 1557752, -1098528, 140915385, 2093367328, 10484632486, 133131785728, -1343478380255, -8738565516288, 1790935681747980, 3245598828836864, -592809746388403495, 6832010190766985216, 179327221659613996634, -5310378915096702812160
OFFSET
0,4
FORMULA
E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*sin(x)^(i*j)/(i*j^i) ).
MATHEMATICA
max = 24; Range[0, max]! * CoefficientList[Series[Product[1 + Sin[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+sin(x)^k/k)))
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*sin(x)^(i*j)/(i*j^i))))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 03 2020
STATUS
approved