login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007838 Number of permutations of n elements with distinct cycle lengths. 39
1, 1, 1, 5, 14, 74, 474, 3114, 24240, 219456, 2231280, 23753520, 288099360, 3692907360, 51677246880, 775999798560, 12364465397760, 208583679951360, 3770392002048000, 71251563061002240, 1421847102467635200, 29861872557056870400, 655829140087057305600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, 2nd ed., Birkhäuser, Boston, 1982.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..450 (terms 0..200 from Vincenzo Librandi)

Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics, arXiv:math/0606370 [math.CO], 2006.

A. Knopfmacher and R. Warlimont, Counting permutations and polynomials with a restricted factorization pattern, Australasian J. of Combinatorics, 13 (1996), 151-162.

D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.

A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-1229 of R. L. Graham et al., eds., Handbook of Combinatorics, 1995; see Examples 8.10 and 11.8 (pdf, ps)

FORMULA

E.g.f.: Product_{m >= 1} (1+x^m/m).

a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)^(1-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002

Asymptotics: a(n) ~ n!(e^{-g} + e^{-g}/n + O((log n)/n^2)), where g is the Euler gamma.

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

MAPLE

p := product((1+x^m/m), m=1..100): s := series(p, x, 100): for i from 1 to 100 do printf(`%.0f, `, i!*coeff(s, x, i)) od:

# second Maple program:

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

b(n, i-1) +b(n-i, min(i-1, n-i))/i))

end:

a:= n-> n!*b(n$2):

seq(a(n), n=0..23); # Alois P. Heinz, Feb 23 2022

MATHEMATICA

max = 20; p = Product[(1 + x^m/m), {m, 1, max}]; s = Series[p, {x, 0, max}]; CoefficientList[s, x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011, after Maple *)

PROG

(PARI) {a(n)=if(n<0, 0, n!*polcoeff( prod(k=1, n, 1+x^k/k, 1+x*O(x^n)), n))} /* Michael Somos, Sep 19 2006 */

CROSSREFS

Cf. A000142, A080130, A087639, A088994, A317166.

Sequence in context: A202764 A197876 A305017 * A306751 A305341 A316611

Adjacent sequences: A007835 A007836 A007837 * A007839 A007840 A007841

KEYWORD

nonn

AUTHOR

Arnold Knopfmacher

EXTENSIONS

More terms from James A. Sellers, Dec 24 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 10:26 EDT 2023. Contains 361689 sequences. (Running on oeis4.)