login
A370761
Expansion of Product_{k>=1} (1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k).
3
1, 5, 14, 70, 196, 640, 2248, 6480, 19072, 56000, 169792, 466560, 1327104, 3642880, 10030080, 27776000, 74541056, 199065600, 531505152, 1401405440, 3672801280, 9674588160, 25018564608, 64701071360, 166363136000, 426159636480, 1084287352832, 2756737761280, 6979072294912
OFFSET
0,2
FORMULA
a(n) ~ (Pi^2/3 + log(2)^2)^(1/4) * 2^(n - 3/4) * exp(sqrt(2*(Pi^2/3 + log(2)^2)*n)) / (3*sqrt(Pi)*n^(3/4)).
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 + 2^(k+1)*x^k)*(1 + 2^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 01 2024
STATUS
approved