OFFSET
0,2
COMMENTS
In general, if d >= 1 and g.f. = Product_{k>=1} (1 + d^(k+1)*x^k) * (1 + d^(k-1)*x^k), then a(n) ~ d^(n + 1/2) * exp(sqrt(2*n*(Pi^2/3 + log(d)^2))) * (Pi^2/3 + log(d)^2)^(1/4) / (2^(5/4) * sqrt(Pi) * (d+1) * n^(3/4)).
FORMULA
a(n) ~ 3^(n + 1/2) * exp(sqrt(2*n*(Pi^2/3 + log(3)^2))) * (Pi^2/3 + log(3)^2)^(1/4) / (2^(13/4) * sqrt(Pi) * n^(3/4)).
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[(1+3^(k+1)*x^k)*(1+3^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 02 2024
STATUS
approved