login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022567
Expansion of Product_{m>=1} (1+x^m)^2.
38
1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 128, 176, 238, 319, 426, 562, 736, 960, 1242, 1598, 2048, 2608, 3306, 4175, 5248, 6570, 8198, 10190, 12622, 15589, 19190, 23552, 28830, 35190, 42842, 52034, 63040, 76198, 91904, 110604, 132832, 159216, 190464, 227417
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*, thus a(4)=9. - Jon Perry, Apr 04 2004
Number of partitions of n into odd parts, each part being of two kinds. E.g., a(3)=6 because we have 3, 3', 1+1+1, 1+1+1', 1+1'+1', 1'+1'+1'. - Emeric Deutsch, Mar 22 2005
Euler transform of period 2 sequence [2,0,2,0,...]. - Emeric Deutsch, Mar 22 2005
Equals A000041 convolved with A010054. - Gary W. Adamson, Jun 11 2009
The sum of the least gaps in all partitions of n. The "least gap" of a partition is the least positive integer that is not a part of the partition. Example: a(4) = 9 because the least gaps in [4], [3,1], [2,2], [2,1,1], and [1,1,1,1] are 1, 2, 1, 3, and 2, respectively. - Emeric Deutsch, May 18 2015
Number of 2-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The least gap is also known as the minimal excludant or mex; see Andrews and Newman. - George Beck, Dec 10 2020
REFERENCES
P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
LINKS
George E. Andrews, David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
Cristina Ballantine, Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
Helena Bergold, Lukas Egeling, and Hung. P. Hoang, Signotopes with few plus signs, arXiv:2411.19208 [math.CO], 2024. See p. 14.
J. Currie, N. Rampersad, Binary words avoiding xx^Rx and strongly unimodal sequences, JIS 18 (2015) #15.10.3.
Alejandro Erickson, Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, arXiv preprint arXiv:1110.5103 [math.CO], 2011.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
Mircea Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69.
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. See q(n)'.
Mbavhalelo Mulokwe and Konstantinos Zoubos, Free fermions, neutrality and modular transformations, arXiv:2403.08531 [hep-th], 2024.
Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = p(n)+p(n-1)+p(n-3)+p(n-6)+...+p(n-k*(k+1)/2)+..., where p() is A000041(). E.g. a(8) = p(8)+p(7)+p(5)+p(2) = 22+15+7+2 = 46. - Vladeta Jovovic, Aug 09 2004
Expansion of q^(-1/12) * (eta(q^2) / eta(q))^2 in powers of q. - Michael Somos, Apr 27 2008
Expansion of chi(-q)^(-2) in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Apr 27 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022597. - Michael Somos, Apr 27 2008
G.f.: Product_{k>0} (1 + x^k)^2.
Convolution square of A000009. Convolution inverse of A022597. - Michael Somos, Apr 27 2008
Parity result: a(n) is even except when n is twice a generalized pentagonal number (i.e., of the form 2*A001318(m) for some m). - Peter Bala, Mar 19 2009
a(n) ~ exp(Pi * sqrt(2*n/3)) / (4 * 6^(1/4) * n^(3/4)) * (1 + (Pi/(12*sqrt(6)) - 3*sqrt(3/2)/(8*Pi)) / sqrt(n) + (Pi^2/1728 - 45/(256*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Mar 05 2015, extended Jan 22 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
EXAMPLE
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 9*x^4 + 14*x^5 + 22*x^6 + 32*x^7 + 46*x^8 + ...
G.f. = q + 2*q^13 + 3*q^25 + 6*q^37 + 9*q^49 + 14*q^61 + 22*q^73 + 32*q^85 + ...
MAPLE
A022567 := proc(n)
local x, m;
product((1+x^m)^2, m=1..n) ;
expand(%) ;
coeff(%, x, n) ;
end proc: # R. J. Mathar, Jun 18 2016
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
(QPochhammer[-1, x]^2/4 + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j+1]] += poly[[j-k+1]], {j, nmax, k, -1}]; , {p, 1, 2}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^2, n))}; /* Michael Somos, Mar 21 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^2, n))}; /* Michael Somos, Jun 03 2005 */
(Magma) Coefficients(&*[(1+x^m)^2:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
(SageMath) # uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 1, 0, 2)
a = EulerTransform(b)
print([a(n) for n in range(45)]) # Peter Luschny, Nov 11 2020
CROSSREFS
Cf. A010054. - Gary W. Adamson, Jun 11 2009
Column k=2 of A286335.
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Sequence in context: A058609 A333697 A128518 * A134004 A123631 A228364
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 14 1998
STATUS
approved