OFFSET
0,8
COMMENTS
A(n,k) is the number of partitions of n into distinct parts (or odd parts) with k types of each part.
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
N. J. A. Sloane, Transforms
FORMULA
G.f. of column k: Product_{j>=1} (1 + x^j)^k.
A(n,k) = Sum_{i=0..k} binomial(k,i) * A308680(n,k-i). - Alois P. Heinz, Aug 29 2019
EXAMPLE
A(3,2) = 6 because we have [3], [3'], [2, 1], [2', 1], [2, 1'] and [2', 1'] (partitions of 3 into distinct parts with 2 types of each part).
Also A(3,2) = 6 because we have [3], [3'], [1, 1, 1], [1, 1, 1'], [1, 1', 1'] and [1', 1', 1'] (partitions of 3 into odd parts with 2 types of each part).
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 3, 6, 10, 15, ...
0, 2, 6, 13, 24, 40, ...
0, 2, 9, 24, 51, 95, ...
0, 3, 14, 42, 100, 206, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..n/i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 29 2019
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[(1 + x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, May 07 2017
STATUS
approved