Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 03 2019 15:23:46
%S 1,1,0,1,1,0,1,2,1,0,1,3,3,2,0,1,4,6,6,2,0,1,5,10,13,9,3,0,1,6,15,24,
%T 24,14,4,0,1,7,21,40,51,42,22,5,0,1,8,28,62,95,100,73,32,6,0,1,9,36,
%U 91,162,206,190,120,46,8,0,1,10,45,128,259,384,425,344,192,66,10,0
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^k.
%C A(n,k) is the number of partitions of n into distinct parts (or odd parts) with k types of each part.
%H Seiichi Manyama, <a href="/A286335/b286335.txt">Antidiagonals n = 0..139, flattened</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f. of column k: Product_{j>=1} (1 + x^j)^k.
%F A(n,k) = Sum_{i=0..k} binomial(k,i) * A308680(n,k-i). - _Alois P. Heinz_, Aug 29 2019
%e A(3,2) = 6 because we have [3], [3'], [2, 1], [2', 1], [2, 1'] and [2', 1'] (partitions of 3 into distinct parts with 2 types of each part).
%e Also A(3,2) = 6 because we have [3], [3'], [1, 1, 1], [1, 1, 1'], [1, 1', 1'] and [1', 1', 1'] (partitions of 3 into odd parts with 2 types of each part).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 2, 3, 4, 5, ...
%e 0, 1, 3, 6, 10, 15, ...
%e 0, 2, 6, 13, 24, 40, ...
%e 0, 2, 9, 24, 51, 95, ...
%e 0, 3, 14, 42, 100, 206, ...
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
%p (t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..n/i)))
%p end:
%p A:= (n, k)-> b(n$2, k):
%p seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Aug 29 2019
%t Table[Function[k, SeriesCoefficient[Product[(1 + x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
%Y Columns k=0-32 give: A000007, A000009, A022567-A022596.
%Y Rows n=0-2 give: A000012, A001477, A000217.
%Y Main diagonal gives A270913.
%Y Antidiagonal sums give A299106.
%Y Cf. A144064, A286352, A308680.
%K nonn,tabl
%O 0,8
%A _Ilya Gutkovskiy_, May 07 2017