login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279778
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.
5
1, -2, 1, 0, -1, 3, -3, 1, 1, -5, 9, -7, 1, 7, -19, 25, -15, -5, 33, -63, 65, -25, -43, 129, -191, 155, -7, -215, 449, -537, 317, 201, -879, 1435, -1391, 433, 1281, -3193, 4261, -3215, -415, 5755, -10647, 11737, -6015, -6585, 22157, -33031, 29489, -5445
OFFSET
0,2
FORMULA
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.
G.f.: (1 - x) (1 - x^5)/(1 + x + x^2 + x^3 + 2 x^4).
MATHEMATICA
z = 50; f[x_] := f[x] = Sum[Floor[(6/5)*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, z}], x]
LinearRecurrence[{-1, -1, -1, -2}, {1, -2, 0, -1, 3, -3}, 50] (* Harvey P. Dale, Mar 11 2024 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved