|
|
A279634
|
|
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 3/2.
|
|
9
|
|
|
1, -3, 5, -9, 18, -36, 72, -144, 288, -576, 1152, -2304, 4608, -9216, 18432, -36864, 73728, -147456, 294912, -589824, 1179648, -2359296, 4718592, -9437184, 18874368, -37748736, 75497472, -150994944, 301989888, -603979776, 1207959552, -2415919104, 4831838208
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
After first 3 terms, agrees with A005010 except for signs; in particular 9 divides a(n) for n >= 3.
Suppose r = c/d is a rational number and (a(n)) is the coefficient series for 1/([r] + [2r]x + [3r]x^2 + ...). Let (s(k)) be the increasing sequence of indices n(k) for which a(n(k)) > = 0. In the table below, "yes" indicates that a check of the first 1000 terms indicates that (n(k)) is (eventually) periodic. Column 1 gives selected values of r, and column 2 gives the corresponding coefficient series.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 1/(1 + 3x + 4x^2 + 6x^3 + ...).
G.f.: (1 - x) (1 - x^2)/(1 + 2x).
|
|
MATHEMATICA
|
z = 50; f[x_] := f[x] = Sum[Floor[(3/2)*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, z}], x]
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|