login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279631
Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = r/(1-r).
1
3, 0, -2, 2, 0, -2, 4, -4, -2, 10, -10, 0, 14, -24, 16, 18, -56, 54, 10, -102, 142, -54, -154, 332, -256, -158, 666, -768, 90, 1136, -1918, 1086, 1510, -4144, 3912, 814, -7760, 10692, -3690, -12058, 24840, -18478, -12628, 50292, -57022, 4864, 87244, -143424
OFFSET
0,1
LINKS
FORMULA
G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = r/(1-r).
MATHEMATICA
z = 100;
r = Sqrt[2]; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]
CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]
CROSSREFS
Sequence in context: A127913 A135991 A331422 * A102003 A176314 A004587
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved