login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279632
Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e - 1, s = r/(1-r).
1
2, -2, 3, -2, -2, 8, -14, 17, -12, -5, 34, -68, 91, -80, 11, 126, -308, 467, -488, 235, 382, -1316, 2291, -2760, 1995, 638, -5220, 10738, -14725, 13447, -3007, -18467, 47914, -74806, 80821, -43890, -51936, 201548, -363193, 450980, -347117, -55972, 782359
OFFSET
0,1
LINKS
FORMULA
G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = r/(1-r).
MATHEMATICA
z = 100;
r = E - 1; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]
CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]
CROSSREFS
Sequence in context: A225637 A185268 A279630 * A363680 A300817 A341417
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved