login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279633
Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e/2, s = r/(1-r).
1
3, 1, -3, 2, 3, -7, 1, 14, -16, -13, 45, -19, -70, 104, 38, -242, 162, 321, -636, -14, 1273, -1214, -1335, 3704, -970, -6387, 8154, 4682, -20708, 10944, 30309, -51241, -9990, 111177, -88723, -133479, 305883, -34310, -571978, 626110, 521149, -1747919, 674248
OFFSET
0,1
LINKS
FORMULA
G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e/2, s = r/(1-r).
MATHEMATICA
z = 100;
r = E/2; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
s = r/(r - 1); g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}]
CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]
CROSSREFS
Sequence in context: A035456 A035664 A095246 * A126208 A287863 A126088
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 18 2016
STATUS
approved