|
|
A001951
|
|
A Beatty sequence: a(n) = floor(n*sqrt(2)).
(Formerly M0955 N0356)
|
|
138
|
|
|
0, 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Earliest monotonic sequence greater than 0 satisfying the condition: "a(n) + 2n is not in the sequence". - Benoit Cloitre, Mar 25 2004
Also the integer part of the hypotenuse of isosceles right triangles. The real part of these numbers is irrational. For proof see Jones and Jones.
First differences are 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, ... (A006337 with a 1 in front). - Philippe Deléham, May 29 2006
It appears that the distance between the a(n)-th triangular number and the nearest square is not greater than floor(a(n)/2). - Ralf Stephan, Sep 14 2013
These are the nonnegative integers m satisfying sin(m*Pi/r)*sin((m+1)*Pi/r) <= 0, where r = sqrt(2). In general, the Beatty sequence of an irrational number r > 1 consists of the numbers m satisfying sin(m*x)*sin((m+1)*x) <= 0, where x = Pi/r. Thus the numbers m satisfying sin(m*x)*sin((m+1)*x) > 0 form the Beatty sequence of r/(1-r). - Clark Kimberling, Aug 21 2014
First write the even positive integers in a row:
2 4 6 8 10 12 14 . . .
Then put 1 under 2 and add:
2 4 6 8 10 12 14 . . .
1
3
Next, under 4, put the least positive integer that is not yet in rows 2 and 3;
it is 2; and add:
2 4 6 8 10 12 14 . . .
1 2
3 6
Next, under the 6 in row 1, put the least positive integer not yet in rows 2 and 3;
it is 4, and add:
2 4 6 8 10 12 14 . . .
1 2 4
3 6 10
Continue in this manner. (End)
This sequence contains an infinite number of powers of 2 (proof in Crux Mathematicorum link). See A103341. - Bernard Schott, Mar 08 2019
|
|
REFERENCES
|
Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 77.
Gareth A. Jones and J. Mary Jones, Elementary Number Theory, Springer, 1998; pp. 221-222.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Roland Sprague, Recreations in Mathematics, Blackie and Son, (1963).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), Entry sqrt(2), p. 18.
|
|
LINKS
|
Ed Doolittle, Problem 19, 26th I.M.O. Finland proposed by Romania, Crux Mathematicorum, p. 70, Vol. 14, Mar. 88.
|
|
FORMULA
|
a(n) = floor(csc(1/(sqrt(2)*n))) for n > 0, since sqrt(2)*n < csc(1/(sqrt(2)*n)) < sqrt(2)*n + 1/(3*sqrt(2)*n) < floor(sqrt(2)*n) + 1 for n > 0. - Jianing Song, Sep 07 2021
|
|
MAPLE
|
a:=n->floor(n*sqrt(2)): seq(a(n), n=0..80); # Muniru A Asiru, Mar 09 2019
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) f(n) = for(j=1, n, print1(floor(sqrt(2*j^2))", "))
(Maxima) makelist(floor(n*sqrt(2)), n, 0, 100); /* Martin Ettl, Oct 17 2012 */
(Haskell)
a001951 = floor . (* sqrt 2) . fromIntegral
(Python)
from sympy import integer_nthroot
|
|
CROSSREFS
|
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|