login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194102
a(n) = Sum_{j=1..n} floor(j*sqrt(2)); n-th partial sum of Beatty sequence for sqrt(2), A001951.
5
1, 3, 7, 12, 19, 27, 36, 47, 59, 73, 88, 104, 122, 141, 162, 184, 208, 233, 259, 287, 316, 347, 379, 412, 447, 483, 521, 560, 601, 643, 686, 731, 777, 825, 874, 924, 976, 1029, 1084, 1140, 1197, 1256, 1316, 1378, 1441, 1506, 1572, 1639, 1708, 1778
OFFSET
1,2
COMMENTS
The natural fractal sequence of A194102 is A194103; the natural interspersion is A194104. See A194029 for definitions.
LINKS
FORMULA
a(n) = B*(B+1)/2 - C*(C+1) - a(C) where B = floor(sqrt(2)*n) and C = floor(B/(sqrt(2)+2)). - M. F. Hasler, Apr 23 2022
MATHEMATICA
a[n_]:=Sum[Floor[j*Sqrt[2]], {j, 1, n}]; Table[a[n], {n, 1, 90}]
PROG
(PARI) apply( A194102(n)=sum(k=1, n, sqrtint(k^2*2)), [1..99]) \\ M. F. Hasler, Jan 16 2021
(PARI) apply( {A194102(n)=if(n>1, (1+n=sqrtint(n^2*2))*n\2-A194102(n-=sqrtint(n^2\2)+1)-(1+n)*n, n)}, [1..99]) \\ M. F. Hasler, Apr 23 2022
(Magma) [(&+[Floor(k*Sqrt(2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jun 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 15 2011
STATUS
approved