login
A194102
a(n) = Sum_{j=1..n} floor(j*sqrt(2)); n-th partial sum of Beatty sequence for sqrt(2), A001951.
5
1, 3, 7, 12, 19, 27, 36, 47, 59, 73, 88, 104, 122, 141, 162, 184, 208, 233, 259, 287, 316, 347, 379, 412, 447, 483, 521, 560, 601, 643, 686, 731, 777, 825, 874, 924, 976, 1029, 1084, 1140, 1197, 1256, 1316, 1378, 1441, 1506, 1572, 1639, 1708, 1778
OFFSET
1,2
COMMENTS
The natural fractal sequence of A194102 is A194103; the natural interspersion is A194104. See A194029 for definitions.
LINKS
FORMULA
a(n) = B*(B+1)/2 - C*(C+1) - a(C) where B = floor(sqrt(2)*n) and C = floor(B/(sqrt(2)+2)). - M. F. Hasler, Apr 23 2022
MATHEMATICA
a[n_]:=Sum[Floor[j*Sqrt[2]], {j, 1, n}]; Table[a[n], {n, 1, 90}]
PROG
(PARI) apply( A194102(n)=sum(k=1, n, sqrtint(k^2*2)), [1..99]) \\ M. F. Hasler, Jan 16 2021
(PARI) apply( {A194102(n)=if(n>1, (1+n=sqrtint(n^2*2))*n\2-A194102(n-=sqrtint(n^2\2)+1)-(1+n)*n, n)}, [1..99]) \\ M. F. Hasler, Apr 23 2022
(Magma) [(&+[Floor(k*Sqrt(2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jun 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 15 2011
STATUS
approved