

A077043


"Threequarter squares": a(n) = n^2  A002620(n).


41



0, 1, 3, 7, 12, 19, 27, 37, 48, 61, 75, 91, 108, 127, 147, 169, 192, 217, 243, 271, 300, 331, 363, 397, 432, 469, 507, 547, 588, 631, 675, 721, 768, 817, 867, 919, 972, 1027, 1083, 1141, 1200, 1261, 1323, 1387, 1452, 1519, 1587, 1657, 1728, 1801, 1875, 1951
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Triangular numbers plus quarter squares: (n+1)*(n+2)/2 + floor(n^2/4) (i.e., A000217(n+1) + A002620(n)).
Largest coefficient in the expansion of (1+x+x^2+...+x^(n1))^3=((1x^n)/(1x))^3, i.e., the coefficient of x^floor[3(n1)/2] and of x^ceiling[3(n1)/2]; also number of compositions of [3(n+1)/2] into exactly 3 positive integers each no more than n.
A set of n independent statements a,b,c,d..., produces n^2 conditional statements of the form "If a, then b" (including selfimplications such as "If a, then a"). If such statements are taken as equivalent to "It is not the case that the first statement is true and the second is false" (material implication), A077043(n) is the minimum number of the conditional statements that can be true. (The maximum number of false conditional statements is A002620(n), the maximum product of two integers whose sum is n.)  Matthew Vandermast, Mar 04 2003
This is also the maximum number of triple intersections between three sets of n lines, where the lines in each set are parallel to each other. E.g., for n=3:
\.\.\.../././
.\.\.\./././.
..\.\.x././..
+**+
***
+**+
.././.x.\.\..
./././.\.\.\.
/././...\.\.\
where '*' = triple intersection, '+' and 'x' = double intersection.
I am pretty sure that the hexagonal configuration of intersections shown above is the optimum and I get the formulas a(n) = (3n^2)/4 for n even and (3n^2+1)/4 for n odd.  Gabriel Nivasch (gnivasch(AT)yahoo.com), Jan 13 2004
For n > 1 the sequence represents the maximum number of points that can be placed in a plane such that the largest distances between any two points does not exceed the shortest of the distances between any two points by more than a factor n1.  Johannes Koelman (Joc_kay(AT)hotmail.com), Apr 27 2006
This is also the number of distinct noncongruent isosceles triangles with side length up to n.  Patrick Hurst (patrick(AT)imsa.edu), May 14 2008
Number of (w,x,y) with all terms in {0,...,n} and w=x>range{w,x,y}.  Clark Kimberling, Jun 02 2012
Number of pairs (x,y) with x in {0,...,n}, y even in {0,...,2n}, and x<=y.  Clark Kimberling, Jul 02 2012
a(n) is the number of 3member sets with nonrepeating positive integer values (x,y,z) whose sums equal 3(n+1). Example: a(4)=12; thus there are 12 sets where x+y+z = 15: (1,2,12), (1,3,11), (1,4,10), (1,5,9), (1,6,8), (2,3,10), (2,4,9), (2,5,8), (2,6,7), (3,4,8), (3,5,7) and (4,5,6).
From above, the number of sets sharing minimum values (minvals) equals a(1)a(0), a(2)a(1), a(3)a(2),... a(n)a(n1) which are the numbers not divisible by 3, in sequence (A001651), range n to 1. So in the above example, there is one set with minval 4, two sets with minval 3, four sets with minval 2 and five sets with minval 1. (End)
Number of partitions of 3n into exactly 3 parts.  Wesley Ivan Hurt, Jan 21 2014
Number of partitions of 3(n1) into at most 3 parts.  Colin Barker, Mar 31 2015
Number of possible positions after n1 steps on the lines of a hexagonal grid.  Reg Robson, Mar 08 2014
12*a(n) is a perfect square when n is even and 12*a(n)  3 is a perfect square when n is odd.  Miquel Cerda, Jun 30 2016
Square of largest Euclidean distance from start point reachable by an nstep walk on a honeycomb lattice.  Hugo Pfoertner, Jun 21 2018


LINKS



FORMULA

a(n) = ceiling(n^2*3/4) = A077042(n, 3); a(n) = a(n).
Also can be computed from 1 * C(n,0) + 2 * C(n,1) + 2 * C(n,2)  Sum((2)^(k3) C(n, k)).  Joshua Zucker, Nov 10 2002
a(2k) = a(2k2) + 6k  3,
a(2k+1) = a(2k1) + 6k,
a(4n) = 12n^2,
a(4n+1) = a(4n) + 6n + 1,
a(4n+2) = a(4n+1) + 6n + 2,
a(4n+3) = a(4n+2) + 6n + 4,
a(4n+4) = a(4n+3) + 6n + 5.
Differences between alternate terms give 3, 6, 9, 12, ... (End)
G.f.: x*(1+x+x^2)/((1+x)*(1x)^3).
The inverse binomial transform yields 0 followed by A141531. (End)
Euler transform of length 3 sequence [3, 1, 1].  Michael Somos, Jun 29 2011
a(n) = 3*n^2/4  ((1)^n1)/8.  Omar E. Pol, Sep 28 2011
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 2*a(n1)  2*a(n3) + a(n4).  Harvey P. Dale, Dec 16 2012
a(0)=0, a(1)=1, a(n) = 3*(n1) + a(n2).  Reg Robson, Mar 08 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+jn)/2).  Wesley Ivan Hurt, Mar 12 2015
a(n) = (3*n)^2/12 for n even and a(n) = ((3*n)^2 + 3)/12 for n odd.  Miquel Cerda, Jun 30 2016
0 = 1 +a(n)*(+a(n+1) a(n+2)) +a(n+1)*(3 a(n+1) +a(n+2)) for all n in Z.  Michael Somos, Apr 02 2017
E.g.f.: (1/8)*exp(x)*(1 + exp(2*x)*(1 + 6*x + 6*x^2)).  Stefano Spezia, Nov 29 2019
Sum_{n>=1} 1/a(n) = Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3).  Amiram Eldar, Jan 16 2023


EXAMPLE

G.f. = x + 3*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 27*x^6 + 37*x^7 + 48*x^8 + ...
a(4)=12 since the compositions of floor(3*(4+1)/2) = 7 into exactly 3 positive integers each no more than 4 are 1+2+4, 1+3+3, 1+4+2, 2+1+4, 2+2+3, 2+3+3, 2+4+1, 3+1+3, 3+2+2, 3+3+1, 4+1+2, 4+2+1.
a(1) = 1 = 1^3;
a(1) + a(3) = 1 + 7 = 2^3;
a(1) + a(3) + a(5) = 1 + 7 + 19 = 3^3;
a(1) + a(3) + a(5) + a(7) = 1 + 7 + 19 + 37 = 4^3;
a(1) + a(3) + a(5) + a(7) + a(9) = 1 + 7 + 19 + 37 + 61 = 5^3; ... (End)


MAPLE



MATHEMATICA

Table[Ceiling[(3n^2)/4], {n, 0, 60}] (* or *) LinearRecurrence[{2, 0, 2, 1}, {0, 1, 3, 7}, 60] (* Harvey P. Dale, Dec 16 2012 *)


PROG

(PARI) {a(n) = n^2  (n^2 \ 4)}; /* Michael Somos, Jun 29 2011 */
(Haskell)
a077043 n = a077043_list !! n
a077043_list = scanl (+) 0 a001651_list


CROSSREFS



KEYWORD

nonn,nice,easy


AUTHOR



STATUS

approved



