login
A195040
Square array read by antidiagonals with T(n,k) = k*n^2/4+(k-4)*((-1)^n-1)/8, n>=0, k>=0.
24
0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 0, 7, 8, 7, 4, 1, 0, 1, 9, 13, 12, 9, 5, 1, 0, 0, 13, 18, 19, 16, 11, 6, 1, 0, 1, 16, 25, 27, 25, 20, 13, 7, 1, 0, 0, 21, 32, 37, 36, 31, 24, 15, 8, 1, 0, 1, 25, 41, 48, 49, 45, 37, 28, 17, 9, 1, 0
OFFSET
0,12
COMMENTS
Also, if k >= 2 and m = 2*k, then column k lists the numbers of the form k*n^2 and the centered m-gonal numbers interleaved.
For k >= 3, this is also a table of concentric polygonal numbers. Column k lists the concentric k-gonal numbers.
It appears that the first differences of column k are the numbers that are congruent to {1, k-1} mod k, if k >= 3.
LINKS
Muniru A Asiru, Rows n=0..100, flattened
EXAMPLE
Array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ...
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
1, 7, 13, 19, 25, 31, 37, 43, 49, 55, ...
0, 9, 18, 27, 36, 45, 54, 63, 72, 81, ...
1, 13, 25, 37, 49, 61, 73, 85, 97, 109, ...
0, 16, 32, 48, 64, 80, 96, 112, 128, 144, ...
1, 21, 41, 61, 81, 101, 121, 141, 161, 181, ...
0, 25, 50, 75, 100, 125, 150, 175, 200, 225, ...
...
MAPLE
A195040 := proc(n, k)
k*n^2/4+((-1)^n-1)*(k-4)/8 ;
end proc:
for d from 0 to 12 do
for k from 0 to d do
printf("%d, ", A195040(d-k, k)) ;
end do:
end do; # R. J. Mathar, Sep 28 2011
MATHEMATICA
t[n_, k_] := k*n^2/4+(k-4)*((-1)^n-1)/8; Flatten[ Table[ t[n-k, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011 *)
PROG
(GAP) nmax:=13;; T:=List([0..nmax], n->List([0..nmax], k->k*n^2/4+(k-4)*((-1)^n-1)/8));; b:=List([2..nmax], n->OrderedPartitions(n, 2));;
a:=Flat(List([1..Length(b)], i->List([1..Length(b[i])], j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Jul 19 2018
CROSSREFS
Rows n: A000004 (n=0), A000012 (n=1), A001477 (n=2), A005408 (n=3), A008586 (n=4), A016921 (n=5), A008591 (n=6), A017533 (n=7), A008598 (n=8), A215145 (n=9), A008607 (n=10).
Columns k: A000035 (k=0), A004652 (k=1), A000982 (k=2), A077043 (k=3), A000290 (k=4), A032527 (k=5), A032528 (k=6), A195041 (k=7), A077221 (k=8), A195042 (k=9), A195142 (k=10), A195043 (k=11), A195143 (k=12), A195045 (k=13), A195145 (k=14), A195046 (k=15), A195146 (k=16), A195047 (k=17), A195147 (k=18), A195048 (k=19), A195148 (k=20), A195049 (k=21), A195149 (k=22), A195058 (k=23), A195158 (k=24).
Sequence in context: A291759 A068494 A200726 * A250486 A316826 A256449
KEYWORD
nonn,tabl,easy
AUTHOR
Omar E. Pol, Sep 27 2011
STATUS
approved