login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A316826
Image of 3 under repeated application of the morphism 3 -> 3,2, 2 -> 1,0,2,0,1,2, 1 -> 1,0,1,2, 0 -> 0,2.
24
3, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0
OFFSET
0,1
COMMENTS
A word that is pure morphic and uniform morphic, but neither pure uniform morphic, nor primitive morphic, nor recurrent.
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
MAPLE
S:= [3=(3, 2), 2 = (1, 0, 2, 0, 1, 2), 1 = (1, 0, 1, 2), 0 = (0, 2)]:
A:= [3]:
for iter from 1 do
Ap:= subs(S, A);
if nops(Ap) > 100 then Ap:= Ap[1..100] fi;
if Ap = A then break fi;
A:= Ap
od:
A; # Robert Israel, Jul 30 2020
MATHEMATICA
SubstitutionSystem[{3 -> {3, 2}, 2 -> {1, 0, 2, 0, 1, 2}, 1 -> {1, 0, 1, 2}, 0 -> {0, 2}}, {3}, 4] // Last (* Jean-François Alcover, Nov 11 2018 *)
CROSSREFS
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A036577.
Sequence in context: A200726 A195040 A250486 * A256449 A355340 A275327
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 14 2018
STATUS
approved