login
A043529
Number of distinct base-2 digits of n.
32
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
0,3
COMMENTS
Also, if prefixed by 0, the trajectory of 0 under repeated applications of the morphism 0 -> 0,1, 1 -> 1,2, 2 -> 2,2. This is a word that is pure uniform morphic, but neither primitive morphic nor recurrent. - N. J. A. Sloane, Jul 15 2018
REFERENCES
Dekking, Michel, Michel Mendes France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts). See Observaion 1.8.
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017. See Example 35.
FORMULA
This is 2 unless n = 2^k - 1 for some k in which case it is 1.
a(n) = 2 - A036987(n). - Antti Karttunen, Nov 19 2017
MAPLE
A043529 := proc(n): if type(ln(n+1)/ln(2), integer) then 1 else 2 fi: end proc: seq(A043529(n), n=0..90); # Johannes W. Meijer, Sep 14 2012
MATHEMATICA
(* Needs version >= 10.2. *)
SubstitutionSystem[{0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 2}}, 0, 7] // Last // Rest (* Jean-François Alcover, Apr 06 2020 *)
Table[Length[Union[IntegerDigits[n, 2]]], {n, 0, 90}] (* Harvey P. Dale, Aug 04 2024 *)
CROSSREFS
Factor of A160466. Cf. A007456 and A081729. - Johannes W. Meijer, May 24 2009
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Sequence in context: A263649 A229904 A160242 * A201219 A254315 A080942
KEYWORD
nonn,base,easy
EXTENSIONS
First term added and offset changed by Johannes W. Meijer, May 15 2009
STATUS
approved