login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273129
The Rote-Fibonacci infinite sequence.
25
0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1
OFFSET
0
COMMENTS
This is an aperiodic sequence that avoids the pattern x x x^R, where x is a nonempty block and x^R denotes the reversal of x.
It can be generated as the limit of the words R(i), where R(0) = 0, R(1) = 00, and R(n) = R(n-1)R(n-2) if n == 0 (mod 3), and R(n) = R(n-1) c(R(n-2)) if n == 1, 2 (mod 3), where c flips 0 to 1 and vice versa.
It can also be generated as the image, under the coding that maps a, b -> 0 and c, d -> 1, of the fixed point (see A316340), starting with a, of the morphism a -> abcab, b -> cda, c -> cdacd, d -> abc.
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807, Nov 29 2017
C. F. Du, H. Mousavi, E. Rowland, L. Schaeffer, J. Shallit, Decision algorithms for Fibonacci-automatic words, II: related sequences and avoidability, preprint, February 10 2016.
MATHEMATICA
Quotient[First[SubstitutionSystem[{0 -> {0, 1, 2, 0, 1}, 1 -> {2, 3, 0}, 2 -> {2, 3, 0, 2, 3}, 3 -> {0, 1, 2}}, {0}, {4}]], 2] (* Paolo Xausa, Jan 30 2025 *)
CROSSREFS
Cf. A316340.
Sequence in context: A189640 A289057 A106138 * A288936 A064990 A284388
KEYWORD
nonn,changed
AUTHOR
Jeffrey Shallit, May 16 2016
STATUS
approved