login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273131
Numbers n such that the bottom entry of the difference table of the divisors of n divides n.
1
1, 2, 4, 6, 8, 12, 14, 16, 24, 32, 64, 128, 152, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
OFFSET
1,2
COMMENTS
All powers of 2 are in the sequence because the bottom entries of their difference triangles are always 1's.
Besides 6, 12, 14, 24 and 152, are there any other non-powers of 2 in this sequence? - David A. Corneth, May 19 2016
LINKS
EXAMPLE
For n = 14 the difference triangle of the divisors of 14 is
1 . 2 . 7 . 14
. 1 . 5 . 7
. . 4 . 2
. . .-2
The bottom entry is -2 and -2 divides 14, so 14 is in the sequence.
MATHEMATICA
Select[Range[10^6], Function[k, If[k == {0}, False, Divisible[#, First@ k]]]@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &] (* Michael De Vlieger, May 17 2016 *)
PROG
(PARI) isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]); ); vd[1] && ((n % vd[1]) == 0); } \\ Michel Marcus, May 16 2016
(PARI) is(n) = my(d=divisors(n), s=sum(i=1, #d, binomial(#d-1, i-1)*(-1)^i*d[i])); if(s!=0, n%s==0) \\ David A. Corneth, May 19 2016
(Sage)
def is_A273131(n):
D = divisors(n)
T = matrix(ZZ, len(D))
for m, d in enumerate(D):
T[0, m] = d
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
return T[len(D)-1, 0].divides(n)
print([n for n in range(1, 6000) if is_A273131(n)])
# Peter Luschny, May 18 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 16 2016
EXTENSIONS
a(12) = 128 and a(14)-a(25) from Michel Marcus, May 16 2016
a(26)-a(28) from David A. Corneth, May 19 2016
a(29)-a(37) from Lars Blomberg, Oct 18 2016
STATUS
approved