The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273131 Numbers n such that the bottom entry of the difference table of the divisors of n divides n. 1
 1, 2, 4, 6, 8, 12, 14, 16, 24, 32, 64, 128, 152, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS All powers of 2 are in the sequence because the bottom entries of their difference triangles are always 1's. Besides 6, 12, 14, 24 and 152, are there any other non-powers of 2 in this sequence? - David A. Corneth, May 19 2016 LINKS Lars Blomberg, Table of n, a(n) for n = 1..40 EXAMPLE For n = 14 the difference triangle of the divisors of 14 is 1 . 2 . 7 . 14 . 1 . 5 . 7 . . 4 . 2 . . .-2 The bottom entry is -2 and -2 divides 14, so 14 is in the sequence. MATHEMATICA Select[Range[10^6], Function[k, If[k == {0}, False, Divisible[#, First@ k]]]@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &] (* Michael De Vlieger, May 17 2016 *) PROG (PARI) isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]); ); vd && ((n % vd) == 0); } \\ Michel Marcus, May 16 2016 (PARI) is(n) = my(d=divisors(n), s=sum(i=1, #d, binomial(#d-1, i-1)*(-1)^i*d[i])); if(s!=0, n%s==0) \\ David A. Corneth, May 19 2016 (Sage) def is_A273131(n):     D = divisors(n)     T = matrix(ZZ, len(D))     for m, d in enumerate(D):         T[0, m] = d         for k in range(m-1, -1, -1) :             T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]     return T[len(D)-1, 0].divides(n) print([n for n in range(1, 6000) if is_A273131(n)]) # Peter Luschny, May 18 2016 CROSSREFS Cf. A000079, A027750, A187202, A273102, A273103, A273109. Sequence in context: A043756 A043765 A043569 * A249721 A010063 A260652 Adjacent sequences:  A273128 A273129 A273130 * A273132 A273133 A273134 KEYWORD nonn AUTHOR Omar E. Pol, May 16 2016 EXTENSIONS a(12) = 128 and a(14)-a(25) from Michel Marcus, May 16 2016 a(26)-a(28) from David A. Corneth, May 19 2016 a(29)-a(37) from Lars Blomberg, Oct 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 19:29 EDT 2021. Contains 343808 sequences. (Running on oeis4.)