|
|
A030302
|
|
Write n in base 2 and juxtapose.
|
|
54
|
|
|
1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
An irregular table in which the n-th row lists the bits of n. - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
A word that is recurrent, but neither morphic nor uniformly recurrent. - N. J. A. Sloane, Jul 14 2018
See A030303 for the indices of 1's (so this is the characteristic function of A030303), with first differences (i.e., run lengths of 0's, increased by 1, with two consecutive 1's delimiting a run of zero 0's) given by A066099. - M. F. Hasler, Oct 12 2020
|
|
REFERENCES
|
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
|
|
LINKS
|
Table of n, a(n) for n=1..90.
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017
|
|
FORMULA
|
Let "index" i = ceiling( W(log(2)/2 (n - 1))/log(2) + 1 ) where W denotes the principal branch of the Lambert W function. Then a(n) = mod(floor(2^(mod(n + 2^i - 2, i) - i + 1) ceiling((n + 2^i - 1)/i - 1)), 2). See also Mathematica code. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
|
|
MATHEMATICA
|
i[n_] := Ceiling[FullSimplify[ProductLog[Log[2]/2 (n - 1)]/Log[2] + 1]]; a[n_] := Mod[Floor[2^(Mod[n + 2^i[n] - 2, i[n]] - i[n] + 1) Ceiling[(n + 2^i[n] - 1)/i[n] - 1]], 2]; (* David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007 *)
Join @@ Table[ IntegerDigits[i, 2], {i, 1, 40}] (* Olivier Gérard, Mar 28 2011 *)
Flatten@ IntegerDigits[ Range@ 25, 2] (* or *)
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 2] &, 105] (* Robert G. Wilson v, Jun 29 2014 *)
|
|
PROG
|
(MAGMA) &cat[Reverse(IntegerToSequence(n, 2)): n in [1..31]]; // Jason Kimberley, Mar 02 2012
|
|
CROSSREFS
|
Essentially same as A030190. Cf. A030303, A007088.
Tables in which the n-th row lists the base b digits of n: A030190 and this sequence (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). [Jason Kimberley, Dec 06 2012]
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Sequence in context: A065828 A176329 A305994 * A051023 A247795 A030657
Adjacent sequences: A030299 A030300 A030301 * A030303 A030304 A030305
|
|
KEYWORD
|
nonn,base,cons,easy,tabf
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|