|
|
A031035
|
|
Write n in base 8 and juxtapose.
|
|
22
|
|
|
1, 2, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7, 6, 0, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Apart from the initial term, identical to A054634.
Should not be merged with A054634 because there are many sequences which depend on this sequence starting with a 1. - N. J. A. Sloane, Jan 30 2010
An irregular table in which the n-th row lists the base-8 digits of n. - Jason Kimberley, Dec 07 2012
The base-8 Champernowne constant: it is normal in base 8. - Jason Kimberley, Dec 07 2012
|
|
LINKS
|
Table of n, a(n) for n=1..90.
|
|
MATHEMATICA
|
Flatten[ IntegerDigits[ Range[40], 8]] (* or *)
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 8] &, 105] (* Robert G. Wilson v, Jun 29 2014 *)
|
|
PROG
|
(Magma) &cat[Reverse(IntegerToSequence(n, 8)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
(Python)
from itertools import count, islice
from sympy.ntheory.factor_ import digits
def A031035_gen(): return (d for m in count(1) for d in digits(m, 8)[1:])
A031035_list = list(islice(A031035_gen(), 30)) # Chai Wah Wu, Jan 07 2022
|
|
CROSSREFS
|
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), this sequence and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Cf. A007094.
Sequence in context: A265522 A256298 A256308 * A054634 A346731 A255828
Adjacent sequences: A031032 A031033 A031034 * A031036 A031037 A031038
|
|
KEYWORD
|
nonn,base,cons,easy,tabf
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|