|
|
A030190
|
|
Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose.
|
|
86
|
|
|
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
An irregular table in which the n-th row lists the bits of n (see the example section). - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
This is the characteristic function of A030303, which gives the indices of 1's in this sequence and has first differences given by A066099. - M. F. Hasler, Oct 12 2020
|
|
REFERENCES
|
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
|
|
LINKS
|
Jean Berstel, Home Page (in case the following link should be broken)
|
|
EXAMPLE
|
As an array, this begins:
0,
1,
1, 0,
1, 1,
1, 0, 0,
1, 0, 1,
1, 1, 0,
1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 0, 1, 1,
1, 1, 0, 0,
1, 1, 0, 1,
1, 1, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 0, 0, 0, 1,
...
|
|
MATHEMATICA
|
|
|
PROG
|
(Haskell)
import Data.List (unfoldr)
a030190 n = a030190_list !! n
a030190_list = concatMap reverse a030308_tabf
(Magma) [0]cat &cat[Reverse(IntegerToSequence(n, 2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
(Python)
from itertools import count, islice
def A030190_gen(): return (int(d) for m in count(0) for d in bin(m)[2:])
|
|
CROSSREFS
|
See also A066099 for (run lengths of 0s) + 1 = first difference of positions of 1s given by A030303.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|