login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083651
Triangular array, read by rows: T(n,k) = k-th bit in binary representation of n (0<=k<=n).
3
0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
n = Sum(T(n,k)*2^k: 0<=k<=n);
T(n, A070939(n))=1 for n>0, T(n,k)=0 for k>A070939(n);
T(n,0)=A000035(n); T(n,n)=0;
A021913(0)=T(0,0), A021913(n)=T(n,1) for n>0.
EXAMPLE
The triangle starts
0
1 0
0 1 0
1 1 0 0
0 0 1 0 0
1 0 1 0 0 0
0 1 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
MAPLE
A083651 := proc(n, k)
floor(n/2^k) ;
modp(%, 2) ;
end proc: # R. J. Mathar, Apr 21 2021
MATHEMATICA
row[n_] := row[n] = PadRight[Reverse[IntegerDigits[n, 2]], n+1];
T[n_, k_] := row[n][[k+1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A000035 (column k=0), A133872 (k=1), A131078 (k=2), A000120 (row sums).
Sequence in context: A287028 A327202 A357448 * A111748 A282244 A286691
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, May 01 2003
STATUS
approved