login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377870
a(n) = A359550(n) * A359550(A276085(n)), where A359550 is multiplicative with a(p^e) = 1 if p > e, otherwise 0, and A276085 is fully additive with a(p) = p#/p.
4
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0
OFFSET
1
FORMULA
a(n) = A359550(n) * A377868(n).
PROG
(PARI)
A359550(n) = { my(f=factor(n)); for(i=1, #f~, if(f[i, 1] <= f[i, 2], return(0))); return(1); }; \\ After code in A048103
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A377868(n) = if(isprime(n), 1, my(x=A276085(n), pp); forprime(p=2, , pp = p^p; if(!(x%pp), return(0)); if(pp > x, return(1))));
A377870(n) = (A359550(n) && A377868(n));
CROSSREFS
Characteristic function of A377871.
Sequence in context: A323153 A288861 A030190 * A353471 A157658 A296211
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 10 2024
STATUS
approved