OFFSET
1,1
COMMENTS
Range of A276087, where A276087(n) = A276086(A276086(n)) [the twofold application of the primorial base exp-function].
A276087(0) = 2, and for n >= 0, A276087(A143293(n)) = A000040(n+2), therefore all primes are included.
From Antti Karttunen, Nov 17 2024: (Start)
Even semiprimes > 4 form a subsequence, because A006862 (Euclid numbers) is a subsequence of A048103. Note that A276087(A376416(n)) = A276086(A006862(n)) = A100484(1+n). On the other hand, none of the odd semiprimes, A046315, occur here, because they are all included in A369002, and thus in A377873. Similarly, A276092 after its initial 1 is a subsequence, because A057588 (Kummer numbers) is also a subsequence of A048103.
For k=1..6, there are 6, 52, 486, 4775, 46982, 467372 terms <= 10^k. Question: Does this sequence have an asymptotic density?
(End)
LINKS
EXAMPLE
PROG
(PARI) \\ See A377870.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 10 2024
STATUS
approved