login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235991
Numbers with an odd arithmetic derivative, cf. A003415.
27
2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 18, 19, 22, 23, 26, 27, 29, 30, 31, 34, 37, 38, 41, 42, 43, 45, 46, 47, 50, 53, 54, 58, 59, 61, 62, 63, 66, 67, 70, 71, 73, 74, 75, 78, 79, 82, 83, 86, 89, 90, 94, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 113
OFFSET
1,1
COMMENTS
A165560(a(n)) = 1; A003415(a(n)) mod 2 = 1;
A007814(a(n)) <= 1, A006519(a(n)) <= 2.
LINKS
FORMULA
n is in this sequence iff either n is congruent to 2 modulo 4 or n and Omega(n) are both odd. - Charlie Neder, Feb 25 2019
MATHEMATICA
ader[n_] := ader[n] = Switch[n, 0|1, 0, _, If[PrimeQ[n], 1,
Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
Select[Range[120], OddQ[ader[#]]&] (* Jean-François Alcover, Oct 10 2021 *)
PROG
(Haskell)
a235991 n = a235991_list !! (n-1)
a235991_list = filter (odd . a003415) [0..]
(Python)
from itertools import count, islice
from sympy import factorint
def A235991_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n: n&3==2 or (n&1 and sum(factorint(n).values())&1), count(max(startvalue, 0)))
A235991_list = list(islice(A235991_gen(), 40)) # Chai Wah Wu, Nov 04 2022
CROSSREFS
Cf. A003415, A006519, A007814, A165560, A235992 (complement), A000040 (subsequence).
Sequence in context: A345297 A336533 A359782 * A377871 A327906 A333866
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 11 2014
STATUS
approved