login
A235992
Numbers with an even arithmetic derivative, cf. A003415.
34
0, 1, 4, 8, 9, 12, 15, 16, 20, 21, 24, 25, 28, 32, 33, 35, 36, 39, 40, 44, 48, 49, 51, 52, 55, 56, 57, 60, 64, 65, 68, 69, 72, 76, 77, 80, 81, 84, 85, 87, 88, 91, 92, 93, 95, 96, 100, 104, 108, 111, 112, 115, 116, 119, 120, 121, 123, 124, 128, 129, 132, 133
OFFSET
1,3
COMMENTS
A165560(a(n)) = 0; A003415(a(n)) mod 2 = 0.
For n > 1: A007814(a(n)) <> 1, A006519(a(n)) <> 2.
Union of multiples of 4 and odd numbers with an even number of prime factors with multiplicity. - Charlie Neder, Feb 25 2019
After two initial terms (0 and 1), numbers n such that A086134(n) = 2. - Antti Karttunen, Sep 30 2019
A multiplicative semigroup; if m and n are in the sequence then so is m*n. (See also comments in A359780.) - Antti Karttunen, Jan 17 2023
LINKS
MATHEMATICA
Select[Range[0, 133], EvenQ@ If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]] &] (* Michael De Vlieger, Sep 30 2019 *)
PROG
(Haskell)
a235992 n = a235992_list !! (n-1)
a235992_list = filter (even . a003415) [0..]
(Python)
from itertools import count, islice
from sympy import factorint
def A235992_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n: not n&3 or (n&1 and not sum(factorint(n).values())&1), count(max(startvalue, 0)))
A235992_list = list(islice(A235992_gen(), 40)) # Chai Wah Wu, Nov 04 2022
CROSSREFS
Cf. A235991 (complement).
Union of A327862 and A327864.
Union of A359829 (primitive elements) and A359831 (nonprimitive elements).
Cf. A003415, A086134, A327863, A327865, A327933, A327935, A358680 (characteristic function).
Positions of multiples of 4 in A358669 (and in A358765).
Cf. also A028260, A036349, A046337, A332820 (other multiplicative semigroups), and comments in A359780.
Sequence in context: A145190 A327907 A177713 * A362006 A359783 A359829
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 11 2014
STATUS
approved