OFFSET
1,2
COMMENTS
If k appears, p*k does not (p primes). - Philippe Deléham, Jun 10 2006
The product of any two terms of this sequence, or any two terms of the complement of this sequence (A026424), is a term of this sequence. The product of a term of this sequence and a term of A026424 is a term of A026424. The primitive terms of this sequence are the semiprimes (A001358). - Franklin T. Adams-Watters, Nov 27 2006
A072978 is a subsequence. - Reinhard Zumkeller, Sep 20 2008
Quadratic residues of A191089(n) as n -> oo. - Travis Scott, Jan 14 2023
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
S. Ramanujan, Irregular numbers, J. Indian Math. Soc., 5 (1913), 105-106; Coll. Papers 20-21.
FORMULA
A066829(a(n)) = 0. - Reinhard Zumkeller, Jun 26 2009
A001222(a(n)) mod 2 = 0. - Reinhard Zumkeller, Oct 05 2011
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 + zeta(2*s))/(2*zeta(s)). - Enrique Pérez Herrero, Jul 06 2012
MAPLE
with(numtheory); A028260 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(bigomega(k) mod 2=0)then return k: fi: od: end: seq(A028260(n), n=1..63); # Nathaniel Johnston, May 27 2011
MATHEMATICA
Select[Range[200], EvenQ[PrimeOmega[#]]&] (* Harvey P. Dale, Aug 14 2011 *)
Select[Range@ 134, LiouvilleLambda@# > 0 &] (* Robert G. Wilson v, Jul 06 2012 *)
PROG
(Haskell)
a028260 n = a028260_list !! (n-1)
a028260_list = filter (even . a001222) [1..]
-- Reinhard Zumkeller, Oct 05 2011
(PARI) is(n)=bigomega(n)%2==0 \\ Charles R Greathouse IV, May 29 2013
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Dan Asimov (dan(AT)research.att.com)
STATUS
approved