login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028258
Expansion of 1/((1-2*x)*(1-4*x)(1-8*x)(1-16*x)).
2
1, 30, 620, 11160, 188976, 3108960, 50434240, 812507520, 13044728576, 209073047040, 3348029967360, 53591377582080, 857645259698176, 13723790036459520, 219592368170516480, 3513571713573027840, 56217898008516427776, 899492372901406310400
OFFSET
0,2
FORMULA
Difference of Gaussian binomial coefficients [ n+1, 4 ]-[ n, 4 ] (n >= 3).
a(n) = 30*a(n-1)-280*a(n-2)+960*a(n-3)-1024*a(n-4), with a(0)=1, a(1)=30, a(2)=620, a(3)=11160. - Harvey P. Dale, Jun 18 2011
a(n) = (2^n*(2^(n+1)-1)*(2^((n+1)+1)-1)*(2^(n+3)-1))/21. - Harvey P. Dale, Jun 18 2011; offset corrected by Charles R Greathouse IV, Feb 10 2017
E.g.f.: exp(2*x)*(64*exp(14*x) - 56*exp(6*x) + 14*exp(2*x) - 1)/21. - Stefano Spezia, Jun 23 2022
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-4x)(1-8x)(1-16x)), {x, 0, 50}], x] (* or *) LinearRecurrence[{30, -280, 960, -1024}, {1, 30, 620, 11160}, 50] (* or *) Table[(2^(n-1)(2^n-1)(2^(n+1)-1)(2^(n+2)-1))/21, {n, 20}] (* Harvey P. Dale, Jun 18 2011 *)
PROG
(PARI) a(n)=(2^n*(2^(n+1)-1)*(2^((n+1)+1)-1)*(2^(n+3)-1))/21 \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved