The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028258 Expansion of 1/((1-2*x)*(1-4*x)(1-8*x)(1-16*x)). 2
 1, 30, 620, 11160, 188976, 3108960, 50434240, 812507520, 13044728576, 209073047040, 3348029967360, 53591377582080, 857645259698176, 13723790036459520, 219592368170516480, 3513571713573027840, 56217898008516427776, 899492372901406310400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS T. D. Noe, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (30, -280, 960, -1024). FORMULA Difference of Gaussian binomial coefficients [ n+1, 4 ]-[ n, 4 ] (n >= 3). a(0)=1, a(1)=30, a(2)=620, a(3)=11160, a(n)=30*a(n-1)-280*a(n-2)+ 960*a(n-3)-1024*a(n-4). - _Harvey P. Dale, Jun 18 2011 a(n)=(2^n*(2^(n+1)-1)*(2^((n+1)+1)-1)*(2^(n+3)-1))/21. - Harvey P. Dale, Jun 18 2011; offset corrected by Charles R Greathouse IV, Feb 10 2017 MATHEMATICA CoefficientList[Series[1/((1-2x)(1-4x)(1-8x)(1-16x)), {x, 0, 50}], x] (* or *) LinearRecurrence[{30, -280, 960, -1024}, {1, 30, 620, 11160}, 50] (* or *) Table[(2^(n-1)(2^n-1)(2^(n+1)-1)(2^(n+2)-1))/21, {n, 20}] (* Harvey P. Dale, Jun 18 2011 *) PROG (PARI) a(n)=(2^n*(2^(n+1)-1)*(2^((n+1)+1)-1)*(2^(n+3)-1))/21 \\ Charles R Greathouse IV, Feb 10 2017 CROSSREFS Cf. A006516, A016290, A006097. Sequence in context: A277877 A279870 A124099 * A285235 A075911 A001719 Adjacent sequences:  A028255 A028256 A028257 * A028259 A028260 A028261 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 02:39 EDT 2020. Contains 333392 sequences. (Running on oeis4.)