login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285235
Number of entries in the seventh cycles of all permutations of [n].
2
1, 30, 622, 11378, 199809, 3499572, 62333543, 1141073295, 21593291506, 423749322362, 8637159909596, 182967605341204, 4028364756058464, 92147187469290768, 2188667860854515856, 53939340317601471888, 1378181549321980128288, 36476226109960185948768
OFFSET
7,2
COMMENTS
Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = A185105(n,7).
Recurrence: (n-7)*(n-4)*a(n) = (n-3)*(6*n^2 - 67*n + 176)*a(n-1) - 5*(n-4)*(3*n^3 - 43*n^2 + 195*n - 283)*a(n-2) + 10*(2*n^5 - 47*n^4 + 436*n^3 - 1999*n^2 + 4532*n - 4062)*a(n-3) - (15*n^6 - 445*n^5 + 5465*n^4 - 35555*n^3 + 129161*n^2 - 248111*n + 196528)*a(n-4) + (6*n^7 - 221*n^6 + 3473*n^5 - 30165*n^4 + 156251*n^3 - 482105*n^2 + 819087*n - 589808)*a(n-5) - (n-6)^7*(n-3)*a(n-6), for n>7. - Vaclav Kotesovec, Apr 25 2017
a(n) ~ n!*n/128. - Vaclav Kotesovec, Apr 25 2017
MAPLE
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
(j-1)!, j=1..n)))
end:
a:= n-> coeff(b(n, 7), x, 1):
seq(a(n), n=7..30);
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
a[n_] := Coefficient[b[n, 7], x, 1];
Table[a[n], {n, 7, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
CROSSREFS
Column k=7 of A185105.
Sequence in context: A279870 A124099 A028258 * A075911 A001719 A004359
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2017
STATUS
approved