OFFSET
0,2
COMMENTS
The e.g.f. given below is Sum_{m=0..2} A075513(3,m)*exp(5*(m+1)*x)/2!.
LINKS
Colin Barker, Table of n, a(n) for n = 0..849
Index entries for linear recurrences with constant coefficients, signature (30,-275,750).
FORMULA
a(n) = (5^n - 8*10^n + 9*15^n)/2.
G.f.: 1/Product_{k=1..3} (1 - 5*k*x).
E.g.f.: (d^3/dx^3)(((exp(5*x)-1)/5)^3)/3! = (exp(5*x) - 8*exp(10*x) + 9*exp(15*x))/2!.
a(n) = 30*a(n-1) - 275*a(n-2) + 750*a(n-3) for n > 2. - Colin Barker, Dec 11 2015
MATHEMATICA
LinearRecurrence[{30, -275, 750}, {1, 30, 625}, 30] (* Harvey P. Dale, Oct 06 2017 *)
PROG
(PARI) Vec(1/((1-5*x)*(1-10*x)*(1-15*x)) + O(x^30)) \\ Colin Barker, Dec 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved