login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075913
Fifth column of triangle A075500.
4
1, 75, 3500, 131250, 4344375, 132890625, 3855156250, 107765625000, 2933008203125, 78271552734375, 2058270703125000, 53524929199218750, 1380066321044921875, 35349237725830078125, 900813505310058593750, 22863955398559570312500, 578500758117828369140625
OFFSET
0,2
COMMENTS
The e.g.f. given below is Sum_{m=0..4}(A075513(5,m)*exp(5*(m+1)*x))/4!.
LINKS
FORMULA
a(n) = A075500(n+5, 5) = (5^n)*S2(n+5, 5) with S2(n, m) = A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..4}(A075513(5, m)*((m+1)*5)^n)/4!.
G.f.: 1/Product_{k=1..5}(1-5*k*x).
E.g.f.: (d^5/dx^5)((((exp(5*x)-1)/5)^5)/5!) = (exp(5*x) - 64*exp(10*x) + 486*exp(15*x) - 1024*exp(20*x) + 625*exp(25*x))/4!.
G.f.: 1 / ((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)). - Colin Barker, Dec 12 2015
MATHEMATICA
Table[5^n*(1 - 2^(n+6) + 2*3^(n+5) - 4^(n+5) + 5^(n+4))/24, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
PROG
(PARI) Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved