|
|
A001719
|
|
Generalized Stirling numbers.
(Formerly M5212 N2266)
|
|
5
|
|
|
1, 30, 625, 11515, 203889, 3602088, 64720340, 1194928020, 22800117076, 450996059800, 9262414989464, 197632289814960, 4381123888865424, 100869322905986496, 2410630110159777216, 59757230054773959552, 1535299458203884231296, 40848249256425236795904
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The asymptotic expansion of the higher order exponential integral E(x,m=5,n=4) ~ exp(-x)/x^5*(1 - 30/x + 625/x^2 - 11515/x^3 + 203889/x^4 - ... ) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..100
D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
|
|
FORMULA
|
E.g.f.: (log(1-x)/(1-x))^4/24. - Vladeta Jovovic, May 05 2003
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+4, 4)*4^k*Stirling1(n+4, k+4). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-4) = |f(n,4,4)|, for n>=4. - Milan Janjic, Dec 21 2008
|
|
MATHEMATICA
|
nn = 24; t = Range[0, nn]! CoefficientList[Series[(Log[1 - x]/(1 - x))^4/24, {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*4^k*stirling(n+4, k+4, 1)); \\ Michel Marcus, Jan 20 2016
|
|
CROSSREFS
|
Cf. A000254, A001706, A001713.
Sequence in context: A028258 A285235 A075911 * A004359 A001777 A205828
Adjacent sequences: A001716 A001717 A001718 * A001720 A001721 A001722
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, May 05 2003
|
|
STATUS
|
approved
|
|
|
|