login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001717 Generalized Stirling numbers.
(Formerly M4984 N2143)
4
1, 15, 179, 2070, 24574, 305956, 4028156, 56231712, 832391136, 13051234944, 216374987520, 3785626465920, 69751622298240, 1350747863435520, 27437426560500480, 583506719443584000, 12969079056388224000, 300749419818102528000, 7265204785551331584000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=4) ~ exp(-x)/x^3*(1 - 15/x + 179/x^2 - 2070/x^3 + 24574/x^4 - 305956/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Oct 20 2009
From Petros Hadjicostas, Jun 25 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation.
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0.
As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m.
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current sequence, a(n) = R_{n+2}^2(a=-4, b=-1) for n >= 0. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(k+2, 2) * 4^k * Stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (1 - 9*log(1 - x) + 10*log(1 - x)^2)/(1 - x)^6. - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-2) = |f(n,2,4)| for n>=2. - Milan Janjic, Dec 21 2008
From Petros Hadjicostas, Jun 26 2020: (Start)
a(n) = [x^2] Product_{r=0..n+1} (x + 4 + r) = (Product_{r=0..n+1} (4 + r)) * Sum_{0 <= i < j <= n+1} 1/((4 + i)*(4 + j)).
Since a(n) = R_{n+2}^2(a=-4, b=-1) and R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b), we conclude that:
(i) a(n) = A001716(n) + (n+5)*a(n-1) for n >= 1;
(ii) a(n) = (n+3)!/6 + (2*n+9)*a(n-1) - (n+4)^2*a(n-2) for n >= 2.
(iii) a(n) = 3*(n+4)*a(n-1) - (3*n^2+21*n+37)*a(n-2) + (n+3)^3*a(n-3) for n >= 3. (End)
MATHEMATICA
nn = 20; t = Range[0, nn]! CoefficientList[Series[(1 - 9*Log[1 - x] + 10*Log[1 - x]^2)/(1 - x)^6, {x, 0, nn}], x] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+2, 2)*4^k*stirling(n+2, k+2, 1)); \\ Michel Marcus, Jan 20 2016
CROSSREFS
Sequence in context: A012800 A016216 A244604 * A293476 A004992 A055084
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)