login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004992
a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 5).
5
1, 15, 180, 1980, 20790, 212058, 2120580, 20902860, 203802885, 1970094555, 18912907728, 180532301040, 1715056859880, 16227076443480, 152998149324240, 1438182603647856, 13482961909198650, 126105349621328550, 1176983263132399800, 10964528293391303400, 101970113128539121620
OFFSET
0,2
FORMULA
G.f.: (1 - 9*x)^(-5/3).
a(n) ~ (3/2)*Gamma(2/3)^-1*n^(2/3)*3^(2*n)*(1 + (5/9)*n^-1 - ...).
D-finite with recurrence: n*a(n) +3*(-3*n-2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/2 - 3*log(3)/2. - Amiram Eldar, Dec 02 2022
MAPLE
a:= n-> (3^n/n!)*mul(3*k+5, k=0..n-1): seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
MATHEMATICA
Table[9^n*Pochhammer[5/3, n]/n!, {n, 0, 25}] (* G. C. Greubel, Aug 22 2019 *)
Table[3^n/n! Product[3k+5, {k, 0, n-1}], {n, 0, 20}] (* Harvey P. Dale, Jan 07 2023 *)
PROG
(PARI) a(n) = 3^n*prod(k=0, n-1, 3*k+5)/n!;
vector(25, n, a(n-1)) \\ G. C. Greubel, Aug 22 2019
(Magma) [1] cat [3^n*&*[3*k+5: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
(Sage) [9^n*rising_factorial(5/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
(GAP) List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+5)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
Terms a(16) onward added by G. C. Greubel, Aug 22 2019
STATUS
approved