login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004994
a(n) = (6^n/n!)*Product_{k=0..n-1} (6*k + 5).
11
1, 30, 990, 33660, 1161270, 40412196, 1414426860, 49707001080, 1752171788070, 61910069845140, 2191616472517956, 77702765843818440, 2758448187455554620, 98031004815728171880, 3487102885588044971160
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - 36*x)^(-5/6).
a(n) ~ Gamma(5/6)^-1*n^(-1/6)*6^(2*n)*(1 - (5/72)*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Product_{k=1..n} (36 - 6/k). - Michel Lagneau, Sep 16 2012
a(n) = (-36)^n*binomial(-5/6, n). - Peter Luschny, Oct 23 2018
E.g.f.: L_{-5/6}(36*x) where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 21 2019
D-finite with recurrence: n*a(n) +6*(-6*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
MAPLE
A004994 := n -> (-36)^n*binomial(-5/6, n):
seq(A004994(n), n=0..16); # Peter Luschny, Oct 23 2018
MATHEMATICA
Table[Product[36-6/k, {k, n}], {n, 0, 20}] (* or *) FoldList[Times, 1, 36-6/Range[20]] (* Harvey P. Dale, Feb 27 2013 *)
PROG
(PARI) vector(20, n, n--; 6^n*prod(j=0, n-1, 6*j+5)/n! ) \\ G. C. Greubel, Aug 20 2019
(Magma) [1] cat [6^n*(&*[6*k+5: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 20 2019
(Sage) [6^(2*n)*rising_factorial(5/6, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
(GAP) List([0..20], n-> 6^n*Product([0..n-1], k-> 6*k+5)/Factorial(n) ); # G. C. Greubel, Aug 20 2019
CROSSREFS
Sequence in context: A268948 A276396 A291070 * A273626 A280958 A061466
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved