login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276396
Pisot sequence E(30,989), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
1
30, 989, 32604, 1074844, 35433984, 1168139025, 38509606533, 1269531933775, 41852188998435, 1379725611747520, 45484903162012677, 1499483953941604826, 49432932068022376719, 1629637160449986379665, 53723644615396971780840, 1771087491625747409656874, 58386785286979621920361203, 1924815522816772987855854836
OFFSET
0,1
COMMENTS
Satisfies a(n) = 33 a(n - 1) - 2 a(n - 2) + 30 a(n - 3) - 11 a(n - 4) for 4 <= n <= 15888 but not for n = 15889. It is not known if there is a linear recurrence which is valid for all n.
LINKS
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016)
MATHEMATICA
a[0] = 30; a[1] = 989; a[n_] := a[n] = Floor[a[n-1]^2/a[n-2] + 1/2];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 10 2018 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(20, 30, 989) \\ Colin Barker, Sep 11 2016
CROSSREFS
For definition of Pisot sequences see A008776.
Sequence in context: A111216 A158672 A268948 * A291070 A004994 A273626
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 10 2016
STATUS
approved