OFFSET
1,2
COMMENTS
This is a divisibility sequence, that is, a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4.
LINKS
Colin Barker, Table of n, a(n) for n = 1..600
Wikipedia, Lucas Sequence
Index entries for linear recurrences with constant coefficients, signature (40,-206,40,-1).
FORMULA
a(n) = sqrt(2)/56*( (sqrt(2) + 1)^(4*n) - (sqrt(2) - 1)^(4*n) + (sqrt(2) + 1)^(2*n) - (sqrt(2) - 1)^(2*n) ).
a(n) = 1/14*Pell(2*n)*A081555(n).
a(n) = -a(-n).
a(n) = 40*a(n-1) - 206*a(n-2) + 40*a(n-3) - a(n-4) for n>4.
O.g.f.: x*(x^2 - 10*x + 1)/((x^2 - 6*x + 1)*(x^2 - 34*x + 1)).
MAPLE
MATHEMATICA
LinearRecurrence[{40, -206, 40, -1}, {1, 30, 995, 33660}, 100] (* G. C. Greubel, Jun 02 2016 *)
PROG
(Magma) I:=[1, 30, 995, 33660]; [n le 4 select I[n] else 40*Self(n-1)-206*Self(n-2)+40*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 04 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 31 2016
STATUS
approved