OFFSET
1,2
COMMENTS
This is a divisibility sequence: if n divides m then a(n) divides a(m). More generally, if r is an even integer then the sequence Fibonacci(r*n) + Fibonacci((r + 2)*n) is a divisibility sequence. See A215466 for the case r = 2.
Also, the sequence s(n) := Fibonacci(4*n) + Fibonacci(6*n) + ... + Fibonacci((2*k + 2)*n) is a divisibility sequence when k is a positive integer that is not a multiple of 3.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..795
Index entries for linear recurrences with constant coefficients, signature (25,-128,25,-1).
FORMULA
a(n) = -a(-n).
a(n) = 25*a(n-1) - 128*a(n-2) + 25*a(n-3) - a(n-4).
O.g.f. (x^2 - 10*x + 1)/((x^2 - 7*x + 1)*(x^2 - 18*x + 1)).
MAPLE
MATHEMATICA
LinearRecurrence[{25, -128, 25, -1}, {1, 15, 248, 4305}, 100] (* G. C. Greubel, Jun 02 2016 *)
Table[1/11 (Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
PROG
(Magma) [1/11*(Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
(PARI) a(n)=(fibonacci(4*n) + fibonacci(6*n))/11 \\ Charles R Greathouse IV, Jun 08 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 29 2016
STATUS
approved