login
A215855
Number of simple labeled graphs on n nodes with exactly 5 connected components that are trees or cycles.
3
1, 15, 245, 3990, 70707, 1381695, 30015205, 724574235, 19353600409, 568456078190, 18238727824135, 635132015698180, 23864603640853943, 962474842863397305, 41472195692307932196, 1901422216588179732355, 92422276780875117660486, 4747285506511684927770980
OFFSET
5,2
LINKS
EXAMPLE
a(6) = 15: each graph has one 2-node tree and 4 1-node trees, and C(6,2) = 15.
MAPLE
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
`if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
end:
a:= n-> T(n, 5):
seq(a(n), n=5..25);
CROSSREFS
Column k=5 of A215861.
The unlabeled version is A215985.
Sequence in context: A133199 A059760 A059615 * A163031 A065920 A273624
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 25 2012
STATUS
approved