login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059615
a(n) is the number of non-parallel lines determined by a pair of vertices (extreme points) in the polytope of real n X n doubly stochastic matrices. The vertices are the n! permutation matrices.
2
0, 1, 15, 240, 6040, 217365, 10651011, 681667840, 55215038880, 5521504648185, 668102052847735, 96206695728917136, 16258931576714668920, 3186750589054271109325, 717018882536990087693835
OFFSET
1,3
REFERENCES
M. Marcus, Hermitian Forms and Eigenvalues, in Survey of Numerical Analysis, J. Todd, ed. McGraw-Hill, New York, 1962.
FORMULA
a(n) = (1/2)*Sum_{k=0...n-2} binomial(n,k)^2 * (n-k)! * d(n-k) for n >= 2, where d(n) is the number of derangements of n elements: permutations of n elements with no fixed points - sequence A000166. Using the formula: d(n) = n!*Sum_{k=0..n} (-1)^k/k!, a(n) = (1/2)*Sum_{k=0..n-2} ((n!/k!)^2 * Sum_{m=0..n-k} (-1)^m/m!).
EXAMPLE
a(3) = 15 because there are 3! = 6 vertices and C(6,2) lines and in this case all are nonparallel so a(3) = C(6,2) = 15.
MAPLE
Digits := 200: with(combinat): d := n->n!*sum((-1)^j/j!, j=0..n): a059615 := n->1/2*sum( binomial(n, k)^2 * (n-k)!*d(n-k), k=0..n-2): for n from 1 to 30 do printf(`%d, `, round(evalf(a059615(n)))) od:
PROG
(PARI) a(n) = (1/2)*sum(k=0, n-2, ((n!/k!)^2 * sum(m=0, n-k, (-1)^m/m!))); \\ Michel Marcus, Mar 14 2018
CROSSREFS
Sequence in context: A154806 A133199 A059760 * A215855 A163031 A065920
KEYWORD
nonn
AUTHOR
Noam Katz (noamkj(AT)hotmail.com), Feb 18 2001
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
Offset corrected by Michel Marcus, Mar 14 2018
STATUS
approved