OFFSET
1,3
REFERENCES
M. Marcus, Hermitian Forms and Eigenvalues, in Survey of Numerical Analysis, J. Todd, ed. McGraw-Hill, New York, 1962.
FORMULA
a(n) = (1/2)*Sum_{k=0...n-2} binomial(n,k)^2 * (n-k)! * d(n-k) for n >= 2, where d(n) is the number of derangements of n elements: permutations of n elements with no fixed points - sequence A000166. Using the formula: d(n) = n!*Sum_{k=0..n} (-1)^k/k!, a(n) = (1/2)*Sum_{k=0..n-2} ((n!/k!)^2 * Sum_{m=0..n-k} (-1)^m/m!).
EXAMPLE
a(3) = 15 because there are 3! = 6 vertices and C(6,2) lines and in this case all are nonparallel so a(3) = C(6,2) = 15.
MAPLE
Digits := 200: with(combinat): d := n->n!*sum((-1)^j/j!, j=0..n): a059615 := n->1/2*sum( binomial(n, k)^2 * (n-k)!*d(n-k), k=0..n-2): for n from 1 to 30 do printf(`%d, `, round(evalf(a059615(n)))) od:
PROG
(PARI) a(n) = (1/2)*sum(k=0, n-2, ((n!/k!)^2 * sum(m=0, n-k, (-1)^m/m!))); \\ Michel Marcus, Mar 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Noam Katz (noamkj(AT)hotmail.com), Feb 18 2001
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
Offset corrected by Michel Marcus, Mar 14 2018
STATUS
approved