login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A215854
Number of simple labeled graphs on n nodes with exactly 4 connected components that are trees or cycles.
3
1, 10, 125, 1610, 23597, 394506, 7533445, 163190665, 3971678359, 107502644249, 3205669601953, 104435680520535, 3690517248021753, 140590728463023632, 5743180320999041664, 250423270549658253350, 11608409727652016747176, 570034426072900362961212
OFFSET
4,2
LINKS
EXAMPLE
a(4) = 1: the graph with 4 1-node trees.
a(5) = 10: each graph has one 2-node tree and 3 1-node trees, and C(5,2) = 10.
MAPLE
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
`if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
end:
a:= n-> T(n, 4):
seq(a(n), n=4..25);
CROSSREFS
Column k=4 of A215861.
The unlabeled version is A215984.
Sequence in context: A259839 A005174 A034668 * A123358 A230390 A089832
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 25 2012
STATUS
approved