login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A215858
Number of simple labeled graphs on n nodes with exactly 8 connected components that are trees or cycles.
3
1, 36, 1110, 31680, 904299, 26603148, 821278744, 26864874465, 935625630797, 34750489933016, 1375999952017938, 57998361908305494, 2596646585329104847, 123180358220543885268, 6175880603945440333627, 326438846760992348696038, 18147404450341079958539275
OFFSET
8,2
LINKS
EXAMPLE
a(9) = 36: each graph has one 2-node tree and 7 1-node trees and C(9,2) = 36.
MAPLE
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
`if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
end:
a:= n-> T(n, 8):
seq(a(n), n=8..25);
CROSSREFS
Column k=8 of A215861.
The unlabeled version is A215988.
Sequence in context: A000809 A151584 A233085 * A103278 A004294 A378245
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 26 2012
STATUS
approved