login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215988
Number of simple unlabeled graphs on n nodes with exactly 8 connected components that are trees or cycles.
3
1, 1, 3, 6, 13, 26, 56, 115, 247, 532, 1172, 2627, 6017, 14020, 33263, 80196, 196133, 485993, 1218103, 3084686, 7882748, 20309036, 52704689, 137675229, 361761187, 955688561, 2537043121, 6765174365, 18113821981, 48683671360, 131303094976, 355284353448
OFFSET
8,3
LINKS
EXAMPLE
a(10) = 3: .o-o o o o. .o-o o o o. .o o o o o.
.|/ . .| . .| | .
.o o o o o. .o o o o o. .o o o o o.
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
`if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
p(n-i*j, i-1, t-j), j=0..min(n/i, t)))))
end:
a:= n-> p(n, n, 8):
seq(a(n), n=8..50);
CROSSREFS
Column k=8 of A215977.
The labeled version is A215858.
Sequence in context: A215985 A215986 A215987 * A215989 A215980 A215979
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2012
STATUS
approved