login
A215987
Number of simple unlabeled graphs on n nodes with exactly 7 connected components that are trees or cycles.
3
1, 1, 3, 6, 13, 26, 56, 115, 246, 530, 1166, 2613, 5982, 13940, 33073, 79760, 195109, 483615, 1212485, 3071358, 7850690, 20231286, 52513864, 137202595, 360578812, 952705531, 2529454122, 6745724961, 18063628118, 48553319703, 130962595786, 354390168855
OFFSET
7,3
LINKS
EXAMPLE
a(9) = 3: .o-o o o o. .o-o o o o. .o o o o o.
.|/ . .| . .| | .
.o o o o . .o o o o . .o o o o .
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
`if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
p(n-i*j, i-1, t-j), j=0..min(n/i, t)))))
end:
a:= n-> p(n, n, 7):
seq(a(n), n=7..50);
CROSSREFS
Column k=7 of A215977.
The labeled version is A215857.
Sequence in context: A213255 A215985 A215986 * A215988 A215989 A215980
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2012
STATUS
approved