login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215987
Number of simple unlabeled graphs on n nodes with exactly 7 connected components that are trees or cycles.
3
1, 1, 3, 6, 13, 26, 56, 115, 246, 530, 1166, 2613, 5982, 13940, 33073, 79760, 195109, 483615, 1212485, 3071358, 7850690, 20231286, 52513864, 137202595, 360578812, 952705531, 2529454122, 6745724961, 18063628118, 48553319703, 130962595786, 354390168855
OFFSET
7,3
LINKS
EXAMPLE
a(9) = 3: .o-o o o o. .o-o o o o. .o o o o o.
.|/ . .| . .| | .
.o o o o . .o o o o . .o o o o .
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
`if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
p(n-i*j, i-1, t-j), j=0..min(n/i, t)))))
end:
a:= n-> p(n, n, 7):
seq(a(n), n=7..50);
CROSSREFS
Column k=7 of A215977.
The labeled version is A215857.
Sequence in context: A213255 A215985 A215986 * A215988 A215989 A215980
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2012
STATUS
approved